A NEW PREPARATION OF ENAMIDES AND DIENAMIDES.

L. BERTHON and D. UGUEN *

Laboratoire de Chimie, Ecole Normale Supérieure, 24, rue Lhomond, 75231 Paris Cedex 05 - FRANCE.

 $\underline{\text{SUMMARY}}$: α -Carbamido sulphones were anionized and alkylated; basic elimination of the $\underline{\text{sulphonyl}}$ residue then led to enamides.

Enamides and dienamides have proved to be valuable reagents, especially for the synthesis of alkaloids $^{(1,2)}$. The main methods for their preparation involve acylation of enamines $^{(2a)}$, thermal rearrangement of propargylic trichloroacetimidates or Curtius rearrangement of dienyl azides $^{(2b)}$.

The well documented feature of sulphone chemistry (3), i.e., 1-enhanced acidity of the methylene closed to the sulphonyl group, 2-leaving group ability of a sulphinate anion, led us to examine the efficiency of the following pathway:

The starting α -carbamido sulphones 1 (Σ =SO $_2$ -Ph, R 1 =Ph or OEt), easily prepared from formaldehyde and phenylsulphinic acid (4), were treated with one molar-equivalent of L.D.A. in THF at -78°. After a few minutes the halide was added and the mixture stirred overnight at that temperature. Partition between water and methylene chloride followed by flash-chromatography on silica gel (hexane, ethyle acetate) of the organic extract afforded the homologated sulphones 2 (5), which were then stirred (4 to 16hrs) in THF with one molar-equivalent of potassium t-butoxide (6) at room temperature to give the unsaturated amides 3 (7) (Table).

Since both the halides and the starting amides are readily available, this procedure nicely complements the previous ones. Further applications of this methodology are under investigation.

TABLE : R ¹ -	1. LDA, THF, -78 C-N-CH ₂ 2. R ² -CH ₂ -X	°C	$R^{2} \xrightarrow{\text{tBuOK, THF}} R^{1} - C - N - CH = CH - R^{2}$ $0 CH_{3}$ 3
R ¹	к ² -сн ₂ -х	<u>2</u> , yield [*] (m.p.)	3, overall yield * (v max, EtOH)
Ph	CH ₃ -i	53(69-71°)	
11	CH ₂ =CH-CH ₂ -Br	83.5(93-94°)	61(265)**
н	CH ₂ =CHBr-CH ₂ -Br	63(103-105°)	
н	Ph-CH ₂ -Br	84(114-116°)	34(287)
11	CH ₃ -C(Me)=CH-CH ₂ Br		33
OEt	CH ₂ =CH-CH ₂ -Br	73(oil)	
н	CH ₂ =CMe-CH ₂ Br	60(45-47°)	56(254.5)
11	CH ₂ =CHBr-CH ₂ Br	85(56°)	28(261)
"	Ph-CH ₂ -Br	81(66°)	68(273)

^{...} Yields in analytically pure products. Adduct with maleic anhydride, m.p. 140-142°.

Acknowledgments:

Best thanks to Professor Marc JULIA for encouragements and CNRS for support.

REFERENCES

- a) A.G. Falles, Can. J. Chem., 1984, 62, 183; b) M. Petrzilka, S.J. Gayson, (1) Synthesis, 1981, 753 and references therein; c) I. Ninomiya and T. Naito in the Alkaloids, volume XXII, Chapter 4, Arnold Brossi Ed., Academic Press, New York, 1983.
- (2) a) W. Appolzer and W. Frostl, Helv. Chim. Acta, 1975, 58, 587. b) P.J. Jessup, C.B. Petty, J. Roos and L.E. Overman, Organic Syntheses, 1979, 59, 1 and references therein.
- (3)
- P. Magnus, Tetrahedron, 1977, 2065 and reference therein.

 J.B.F.N. Engberts, J. Strating, Recl. Trav. Chim. Pays-Bas, 1984, 83, 733; T. (4) Olinjsma, J.B.F.N. Engberts, J. Strating, Recl. Trav. Chim., Pays-Bas, 1967, 86, 463.
- To our knowledge, only one report of such an alkylation has been reported so far : (5) H. Yanagisawa, A. Ando, M. Shiozaki and T. Hiraoka, Tetrahedron Lett., 1983, 1037. On the other hand the parent alkylsulfonyl derivatives gave, under basic conditions, rearranged products arising from anionization in the alkylsulfonyl moiety: Y. Ishikawa, Y. Kubayashi, K. Suzuki, Y. Serat and M. Sckiya, Chem. Pharm. Bull., 1981, 29, 2496 ; P. Messinger and H. Greve, Arch. Pharm., 1982, 315, 385 ; For related anionization and alkylation of α -carbamido nitriles and phosphonates, dialkylamides: G. Stork, R.M. Jacobson and R. Levitz, Tetrahedron Lett., 1979, 771; D. Seebach, M.A. Syfirg, Angew. Chem. Inter. Ed., 1984, 23, 248; P. Beak and W.J. Zajdel, J. Am. Chem. Soc., 1984, 106, 1010 and references therein; T. Shono, Y. Matsumura, T. Kanazawa, Tetrahedron Lett., 1983, 4577.
- M. Julia, D. Arnould, Bull. Soc. Chim. Fr., 1974, 534. (6)
- All compounds described in this paper have given satisfactory NMR (H^1 , c^{13}) Mass (7)and I.R. spectra.

(Received in France 3 August 1984)